حذف ماده رنگزای آزو با استفاده از آندهای MWCNTs/Ti و MWCNTs-TiO2/Ti



نشریه: سال يازدهم - شماره دوم- تابستان 1396 - مقاله 1   صفحات :  79 تا 90



کد مقاله:
JCST-15-05-2016-1658

مولفین:
فریده نبی زاده چیانه: دانشگاه سمنان - دانشکده شیمی
جلال بصیری پارسا: دانشگاه بوعلی سینا - دانشکده شیمی


چکیده مقاله:

هدف اصلی این تحقيق کاربرد روش لایه‌نشانی الکتروفورتیک (EPD) برای اصلاح الکترودهای بر پایه تیتانیم با نانو مواد و استفاده از آنها برای حذف ماده رنگزای اسید قرمز 33(AR33)، با استفاده از فرآیندهای الکترولیز و فتوالکتروکاتالیست می‌باشد. در این مقاله، الکترودهای تیتانیم با نانو لوله‌های کربنی چند دیواره ((MWCNTs/Ti)، کامپوزیت نانو لوله‌های کربنی چند دیواره - دی اکسید تیتانیم (MWCNTs-TiO2/Ti) با روش لایه نشانی الکتروفورتیک تهیه شدند. کارایی آند MWCNTs/Ti برای حذف ماده رنگزای AR33 ارزیابی شد و بازده بالایی برای حذف mg/l 30 ماده رنگزای AR33 (90%) با استفاده از چگالي جریان mA/cm2 5/5، غلظت g/l 1 کلرید سدیم و 10=pH در مدت زمان 60 دقیقه بدست آمد. همچنین، فعالیت الکتروکاتالیستی MWCNTs-TiO2/Ti از طریق تخریب AR33 به عنوان آلاینده نمونه بررسی شد. 98% حذف رنگبری و 41.66% معدنی‌سازی ماده رنگزا بعد از 60 دقیقه تصفیه فوتوالکتروکاتالیستی با الکترود MWCNTs-TiO2/Ti، چگالي جریان mA/cm2 7.5، mg/l 30 ماده رنگزا و 5.2=pH به دست آمد.


Article's English abstract:

The main objective in this research was application of Electrophoretic deposition (EPD) method for modification and coating of titanium electrodes with nano materials and their application for removal of Acid Red 33 (AR33) dye , by using electrocatalysis and photoelectrocatalysis processes. In this paper the titanium electrodes coated with multiwall carbon nanotubes (MWCNTs/Ti) and multiwall carbon nanotubes – titanium dioxide composite (MWCNTs-TiO2/Ti) were prepared by the electrophoretic deposition (EPD) method. The evaluation of efficiency of prepared MWCNTs/Ti anode for removal of AR33 indicated that high decolorization efficiency (90%) was achieved for dye concentration of 30 mg/L, using a current density of 5.5 mA cm-2 , NaCl 1g/L and pH=10 for 60 min. Also, photoelectrocatalysis (PEC) activity of MWCNTs-TiO2 composite electrode was investigated through the degradation of AR33 as a model pollutant. 98% of decolorization efficiency and 41.66% of mineralization for AR33 dye were achieved after 60 min of photoelectrocatalytic treatment using the MWCNTs-TiO2/Ti composite electrode at a current density of 7.5 mA cm−2 , dye concentration of 30 mg/L and pH=5.2.


کلید واژگان:
لایه‌نشانی الکتروفورتیک، MWCNTs/Ti، MWCNTs-TiO2/Ti، اسید قرمز 33.

English Keywords:
Electrophoretic deposition, MWCNTs/Ti, MWCNTs-TiO2/Ti, Acid Red 33.

منابع:
34. م. محمدی زاد، ح. گنجی دوست، ب. آیتی, تعیین شرایط بهینه حذف ماده رنگزا توسط نانوکامپوزیت پلیآنیلین/گرافن، تحت تابش نور مرئی. نشريه علمي پژوهشي علوم و فناوري رنگ. (1395)10 ، 42-31.

English References:
1. S. Kim, S.K. Choi, B.Y. Yoon, S.K. Lim, H. Park, Effects of electrolyte on the electrocatalytic activities of RuO2/Ti and Sb–SnO2/Ti anodes for water treatment. Appl. Catal B: Environ. 97(2010), 135-141. 2. S. Y. Yang, Y. S. Choo, S. Kim, S. K. Lim, J. Lee, H. Park, Boosting the electrocatalytic activities of SnO2 electrodes for remediation of aqueous pollutants by doping with various metals. Appl. Catal B: Environ. 111–112(2012). 317-325. 3. Y. Feng, Y.-H. Cui, J. Liu, B. E. Logan, Factors affecting the electro-catalytic characteristics of Eu doped SnO2/Sb electrode. J. Hazard. Mater. 178(2010), 29-34. 4. J. He, H. Yu, B. Fugetsu, S. Tanaka, L. Sun, Electrochemical removal of bisphenol A using a CNT-covered polyester yarn electrode. Sep. Purif. Technol. 110 (2013) 81-85. 5. X. Li, S. Chen, L. Li, X. Quan, H. Zhao, Electrochemically enhanced adsorption of nonylphenol on carbon nanotubes: Kinetics and isotherms study. J. Colloid. Interf. Sci. 415(2014), 159-164. 6. Y. X. Liu, D. X. Yuan, J. M. Yan, Q. L. Li, T. Ouyang, Electrochemical removal of chromium from aqueous solutions using electrodes of stainless steel nets coated with single wall carbon nanotubes. J. Hazard. Mater. 186(2011), 473-480. 7. Y. Liu, J. Yan, D. Yuan, Q. Li, X. Wu, The study of lead removal from aqueous solution using an electrochemical method with a stainless steel net electrode coated with single wall carbon nanotubes, Chem. Eng. J. 218(2013), 81-88. 8. Y. Wang, S. Sun, G. Ding, H. Wang, Electrochemical degradation characteristics of refractory organic pollutants in coking wastewater on multiwall carbon nanotube-modified electrode. J. Nanomater. 2012(2012), 3-7. 9. M. Rivera, M. Pazos, M. ?. Sanrom?n, Development of an electrochemical cell for the removal of Reactive Black 5. Desalination. 274(2011), 39-43. 10. H. Zhao, H. Song, Z. Li, G. Yuan, Y. Jin, Electrophoretic deposition and field emission properties of patterned carbon nanotubes. Appl. Surf. Sci. 251(2005), 242-244. 11. D. Zhang, C. Pan, L. Shi, H. Mai, X. Gao, Controllable synthesis and highly efficient electrocatalytic oxidation performance of SnO2/CNT core-shell structures. Appl. Surf. Sci. 255(2009), 4907-4912. 12. Z. Mesgari, M. Gharagozlou, A. Khosravi, K. Gharanjig, Synthesis, characterization and evaluation of efficiency of new hybrid Pc/Fe-TiO2 nanocomposite as photocatalyst for decolorization of methyl orange using visible light irradiation. Appl. Catal A: Gen. 411–412(2012), 139-145. 13. Z. Mesgari, M. Gharagozlou, A. Khosravi, K. Gharanjig, Spectrophotometric studies of visible light induced photocatalytic degradation of methyl orange using phthalocyanine-modified Fe-doped TiO2 nanocrystals, Spectrochim. Acta. Mol. Biomol. Spectrosc. 92(2012), 148-153. 14. C. H. Wu, C. Y. Kuo, S. T. Chen, Synergistic effects between TiO2 and carbon nanotubes (CNTs) in a TiO2/CNTs system under visible light irradiation. Environ. Technol. 34(2013), 2513-2519. 15. S.-M. Lam, J.-C. Sin, A. Z. Abdullah, A. R. Mohamed, Photocatalytic TiO2/carbon nanotube nanocomposites for environmental applications: An overview and recent developments. Fuller. Nanotub. Car. N. 22(2013), 471-509. 16. W. Jarernboon, S. Pimanpang, S. Maensiri, E. Swatsitang, V. Amornkitbamrung, Effects of multiwall carbon nanotubes in reducing microcrack formation on electrophoretically deposited TiO2 film. J. Alloys. Compd. 476(2009), 840-846. 17. J. Cho, S. Schaab, J. Roether, A. Boccaccini, Nanostructured carbon nanotube/TiO2 composite coatings using electrophoretic deposition (EPD). J. Nanopart. Res. 10(2008), 99-105. 18. M. D. Ganji, M. Hesami, M. Shokry, S. Mahmoudi, Interaction between methanol and single-walled carbon nanotubes: Density functional theory study. Phys B: Condens. Matter. 406(2011), 1295-1299. 19. Z. Li, B. Gao, G. Z. Chen, R. Mokaya, S. Sotiropoulos, G. Li Puma, Carbon nanotube/titanium dioxide (CNT/TiO2) core–shell nanocomposites with tailored shell thickness, CNT content and photocatalytic/photoelectrocatalytic properties. Appl. Catal B: Environ. 110(2011), 50-57. 20. M. l. Chen, F. j. Zhang, W. c. Oh, Synthesis, characterization, and photocatalytic analysis of CNT/TiO2 composites derived from MWCNTs and titanium sources. New. Carbon. Mater. 24(2009), 159-166. 21. E. R. Morales, N. R. Mathews, D. Reyes-Coronado, C. R. Maga?a, D. R. Acosta, G. Alonso-Nunez, O. S. Martinez, X. Mathew, Physical properties of the CNT:TiO2 thin films prepared by sol–gel dip coating. Sol. Energy. 86(2012), 1037-1044. 22. L. C. Chen, Y. C. Ho, W. S. Guo, C. M. Huang, T. C. Pan, Enhanced visible light-induced photoelectro-catalytic degradation of phenol by carbon nanotube-doped TiO2 electrodes. Electrochim. Acta. 54(2009), 3884-3891. 23. G. Hu, X. Meng, X. Feng, Y. Ding, S. Zhang, M. Yang, Anatase TiO2 nanoparticles/carbon nanotubes nanofibers: preparation, characterization and photocatalytic properties. J. Mater. Sci. 42(2007), 7162-7170. 24. H. Yu, X. Quan, S. Chen, H. Zhao, TiO2?Multiwalled Carbon Nanotube Heterojunction Arrays and Their Charge Separation Capability. The. J. Phys. Chem C. 111(2007), 12987-12991. 25. A. R. Boccaccini, J. Cho, J. A. Roether, B. J. C. Thomas, E. Jane Minay, M. S. P. Shaffer, Electrophoretic deposition of carbon nanotubes. Carbon. 44(2006), 3149-3160. 26. T. Talebi, B. Raissi, M. Haji, A. Maghsoudipour, The role of electrical conductivity of substrate on the YSZ film formed by EPD for solid oxide fuel cell applications. Int. J. Hydrogen. Energ. 35(2010), 9405-9410. 27. F. Nabizadeh Chianeh, J. Basiri Parsa, Degradation of azo dye in aqueous solution using Ti anode coated with MWCNTs–TiO2. J. Iran. Chem. Soc. 12(2015), 175-182. 28. B. Aksakal, A.R. Boccaccini, Electrophoretic deposition of selenium. Mater. Lett. 76(2012), 177-180. 29. K. Yamaji, H. Kishimoto, Y. Xiong, T. Horita, N. Sakai, H. Yokokawa, Performance of anode-supported SOFCs fabricated with EPD techniques. Solid. State. Ionics. 175(2004), 165-169. 30. Y. Ding, C. Yang, L. Zhu, J. Zhang, Photoelectrochemical activity of liquid phase deposited TiO2 film for degradation of benzotriazole. J. Hazard. Mater. 175(2010), 96-103. 31. C. D. Vecitis, G. Gao, H. Liu, Electrochemical carbon nanotube filter for adsorption, desorption, and oxidation of aqueous dyes and anions. The. J. Phys. Chem C. 115(2011), 3621-3629. 32. Z. Ai, P. Yang, X. Lu, Degradation of 4-chlorophenol by a microwave assisted photocatalysis method. J. Hazard. Mater. 124(2005), 147-152. 33. M. Murugananthan, S. Yoshihara, T. Rakuma, N. Uehara, T. Shirakashi, Electrochemical degradation of 17?-estradiol (E2) at boron-doped diamond (Si/BDD) thin film electrode. Electrochim. Acta. 52(2007), 3242-3249. 35. Y. Zhao, Y. Hu, Y. Li, H. Zhang, S. Zhang, L. Qu, G. Shi, L. Dai, Super-long aligned TiO2/carbon nanotube arrays. Nanotechnology. 21(2010), 505702(7pp). 36. D. Wang, X. Li, J. Chen, X. Tao, Enhanced photoelectrocatalytic activity of reduced graphene oxide/TiO2 composite films for dye degradation, Chem. Eng. J. 198–199(2012), 547-554. 37. X. S. Hua, Y. J. Zhang, N. H. Ma, X. F. Li, H. W. Wang, A new coral structure TiO2/Ti film electrode applied to photoelectrocatalytic degradation of Reactive Brilliant Red. J. Hazard. Mater. 172(2009), 256-261. 38. J. H. Chang, A. V. Ellis, Y. H. Hsieh, C. H. Tung, S. Y. Shen, Electrocatalytic characterization and dye degradation of Nano-TiO2 electrode films fabricated by CVD. Sci. Total. Environ. 407(2009), 5914-5920. 39. Y. Zhang, X. Xiong, Y. Han, X. Zhang, F. Shen, S. Deng, H. Xiao, X. Yang, G. Yang, H. Peng, Photoelectrocatalytic degradation of recalcitrant organic pollutants using TiO2 film electrodes: An overview. Chemosphere. 88(2012). 145-154. 40. Y. Yu, J. C. Yu, C. Y. Chan, Y. K. Che, J. C. Zhao, L. Ding, W. K. Ge, P. K. Wong, Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye. Appl. Catal B: Environ. 61(2005), 1-11. 41. N. Wang, X. Li, Y. Wang, X. Quan, G. Chen, Evaluation of bias potential enhanced photocatalytic degradation of 4-chlorophenol with TiO2 nanotube fabricated by anodic oxidation method. Chem. Eng. J. 146(2009), 30-35.



فایل مقاله
تعداد بازدید: 708
تعداد دریافت فایل مقاله : 18

ورود به سامانه نشریه
شناسنامه ی نشریه
صاحب امتياز:
موسسه پژوهشي
علوم و فناوري رنگ و پوشش
مدير مسوول:
پروفسور زهرا رنجبر
سردبير:
پروفسور زهرا رنجبر
مدير اجرايي:
دکتر فرهاد عامري
شاپا چاپي:
8779 - 1735
شاپا الکترونيکي:
2169 - 2383
دسترسی سریع
آخرین شماره های نشریه
آمارهای وبگاه
تعداد بازدید:709

کاربران حاضر:72