حذف جذبی ماده رنگزاي کنگو قرمز با نانوکامپوزیت اکسید مس/خاک اره در سیستم ستونی



نشریه: سال يازدهم - شماره دوم- تابستان 1396 - مقاله 3   صفحات :  99 تا 111



کد مقاله:
JCST-03-07-2016-1663

مولفین:
رضا انصاری: دانشگاه گیلان - گروه شیمی، دانشکده علوم پایه
نوشین الوان پور: دانشگاه گیلان - گروه شیمی، دانشکده علوم پایه
فریبا استوار: پژوهشکده محیط زیست جهاد دانشگاهی - مهندسی محیط زیست


چکیده مقاله:

در این پژوهش، ابتدا کامپوزیت نانو ذرات CuO با خاک اره (CuO/SD) به عنوان بستر سلولزی، از طریق رسوب‌دهی شیمیایی تهیه و سپس برای حذف ماده رنگزاي کنگو قرمز (CR) به عنوان نمونه‌ای از مواد رنگزاي آنیونی استفاده شد. برای تعیین ساختار نانو جاذب تهیه شده، از روش‌هايي نظیر پراش پرتو ایکس (XRD) و میکروسکوپ الکترونی روبشی (SEM)استفاده شد. مطالعات جذب در سیستم غیرتعادلی یا ستونی انجام گرفت. برای تعیین کارایی نانو‌کامپوزیت تهیه شده در سیستم ستونی، تاثیر چندین عامل مانند pH، غلظت اولیه، سرعت جریان و عمق بستر (ارتفاع ستون) بر روی جذب مطالعه شد. کاهش pH خوراک اولیه، سبب افزایش حجم نقطه شکست منحنی شده و pH طبیعی محلول ماده رنگزاي کنگو قرمز با مقدار 5 به عنوان pH بهینه انتخاب گردید. با کاهش سرعت جریان و افزایش ارتفاع بستر، به دلیل افزایش زمان تماس و سطح جاذب در دسترس، نقطه شکت منحنی در حجم بیشتر و ظرفیت جذب بالاتر اتفاق می افتد. با کاهش غلظت اولیه ماده رنگزا نیز، حجم نقطه شکست افزایش و ظرفیت جذب آن کاهش یافت. از مدل‌های سینتیکی مختلف نظیر مدل ریاضی توماس، آدامس- بوهارت و BDST برای ارزیابی سیستم جذبی در ستون استفاده شد. تطابق خوب مدل توماس در طراحی ستون نشان می دهد که فرآیند جذب از سینتیک لانگمویر پیروی می‌کند، جذب صورت گرفته تک‌لایه بوده و جاذب دارای حداکثر ظرفیت جذب برابر mg/g 28.4 می‌باشد. در خاتمه برای تعیین امکان کاربرد نانوکامپوزیت برای استفاده‌های مکرر، مطالعات واجذب و احیای ستون انجام شد.


Article's English abstract:

In this research, CuO nano-particles composite with sawdust as a cellulose bed (termed as CuO/SD NC) were prepared via chemical precipitation and then were used for removal of Congo red dye as a typical anionic dye (termed as CR) from aqueous solutions. Surface characterisation of the nanomaterial adsorbents was carried out by X-ray Diffraction (XRD) and scaning electron microscopy (SEM) techniques. Adsorption studies were conducted by CuO/SD nanocomposite in a fixed-bed column system. In order to find out removal optimisation conditions in column adsorption experiments, the effects of several parameters, such as pH, initial dye concentration, flow rate, and bed depth on the sorption of Congo red dye were studied. When the feedstock pH reduction, the volume of breakthrough curves increased and Congo red dye natural pH value equal 5 was chosen as the optimal pH. By reducing the solution dye flow rate and increasing adsorbent bed height, due to increased contact time and adsorbent surface available, the breakthrough curves volume increased and higher absorption capacity occurs. Varios kinetic models such as Thomas, Adams-Bohart and BDST kinetic model were applied in order to obtain colum adsorption performance. Thomas model shows good agreement in the column design that indicates the process follows the Langmuir adsorption kinetics, adsorption process was one layer and the maximum absorption capacity of the absorbent was obtained 28.4 mg/g. At the end in order to find out the possible frequent use of adsorbent in column system, desorption and regeneration investigation was also studied.


کلید واژگان:
نانو کامپوزیت CuO/SD، جذب سطحی، کنگو قرمز، سیستم ستونی.

English Keywords:
CuO/SD nanocomposite, Adsorption, Congo red, Column system.

منابع:
6. دکتر نظام الدین دانشور، شیمی تصفیه آب و پساب های صنعتی، انتشارات عمیدی، دانشگاه زنجان، 1388. 28. ر. انصاري، ا. محمدخواه، س. علائي، حذف رنگزای آنیونی قرمز کنگو از محلول‌های آبی با استفاده از خاك اره اصلاح شده با پلي‌آنيلين: بررسی ایزوترم و سینتیک جذب، نشريه علمي پژوهشي علوم و فناوري رنگ، (1390)9، 344-335.

English References:
1. A. Abbas, S. Murtaza, M. Munir, T. Zahid, N. Abbas, Removal of Congo Red Aqueous solution with Raphanus sativus Peels and Activated Carbon: A Comparative study. Agric. Environ. 10 (2011), 802-809. 2. V. S. Kaushal, Removal of Congo red dye from aqueous solution by seed pods. Int. J. Chem. Tech. Res. 4 (2012), 1038-1043. 3. G. K. Nagda, V. S. Ghole, Biosorption of Congo Red by Hydrogen Perxide treated tendu Wast. Environ. Health. Sci. Eng. 6 (2009), 195-200. 4. http://www.Wikipedia.org/Wiki/Congo red. 5. I. D. Mall, V. C. Srivastava, N. K. Agarwal, I. M. Mishra, Remival of congo red from aqueous solution by bagasse fly ash and activated carbon: Kinetic study and equilibrium isotherm analyses. Chemospher. 61 (2005), 492-501. 7. H. Patel, R. T. Vashi. Removal of Congo Red dye from its aqueous solution using natural coagulants. J. Saudi Chem. Soc. 16 (2012), 131-136. 8. X. Ning, Ch. Yang, Y. Wang, Z. Yang, J. Wang, R. Li. Decolorization and biodegradation of the azo dye Congo red by an isolated Acinetobacter baumannii YNWH 226. Biotechnol. Bioproc. Eng. 19 (2014), 687-695. 9. M. Imran-Khan, Sh. Akhtar, Sh. Zafar, A. Shaheen, M. A. Khan, R. Luque and A. ur Rehman. Removal of Congo Red from Aqueous Solution by Anion Exchange Membrane (EBTAC): Adsorp. Kinetic Themo. Mater. 8 (2015), 4147-4161. 10. A. R. Amrin. Photocatlytic oxidation of congo red dye by using Co2O3–Cr2O3 as a Photocatalyst. Mesop. Environ. J. 2 (2016), 66-74. 11. T. Tapalad, A. Neramittagapong, S. Neramittagapong, M. Boonmee, Degradation of Congo Red Dye by Ozonation. J. Sci. 35 (2008), 63-68. 12. P. Gharbani, S. M. Tabatabaii, A. Mehrizad, Removal of Congo red from textile wastewater by ozonation. Int. J. Environ. Sci. Tech. 5 (2008), 495-500. 13. R. Somasekhara, K. L. Sivarama, R. A. Varada. The use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium. J. Hazard. Mater. 203 (2012), 118-127. 14. C. A. Buckley. Membrane technology for treatment of dye house effluents. Water Sci. Technol. 25 (1992), 203–209. 15. O. S. Ayanda, O. Adeyi, B. Durojaiye, O. Olafisoye. Adsorption Kinetics and Intraparticulate Diffusivities of Congo Red onto Kola Nut Pod Carbon. Pol. J. Environ. Stud. 5 (2012), 1147 1152. 16. X. S. Wang, J. P. Chen. Removal of the azo dye congo red from aqueous solutions by the marine alga Porphyra yezoensis Ueda. Clean–Soil, Air, Water. 37 (2009), 793-798. 17. C. Yun Chen, J. Chao Chang, A. Hwang Chen, Competitive biosorption of azo dyes from aqueous solution on the template crosslinked-chitosan nanoparticles. J. Hazard. Mater. 185 (2011), 430-441. 18. D. Zvezdova, S. Georgieva, Kinetic and equilibrium studies on the removal of Congo red from aqueous solution by biosorption on crosslinked chitosan- ECH nanoparticles. ?????? ??????? ?? ????????? ???????????. 10 (2013), 72-77. 19. G. Akkaya, F. Güzel. Application of Some Domestic Wastes as New Low-Cost Biosorbents for Removal of Methylene Blue: Kinetic and Equilibrium Studies. Chem. Eng. Commun. 201 (2014), 557–578. 20. V. K. Gupta, A.I. Suhas, V.K. Saini,. Removal of Rhodamine B, Fast green, Methylene blue from wastewater using red mud, an aluminium industry waste. Ind. Eng. Chem. Res. 43 (2004), 1740–1747. 21. V. K. Gupta, A. Mittal, V. Gajbe, J. Mittal. Removal and recovery of hazardous azo dye Acid Orange 7 through adsorption over waste materials: bottom ash and de-oiled soya. Ind. Eng. Chem. Res. 45 (2006), 1446–1453. 22. F. Ferrero. Dye removal by low cost adsorbents: hazelnut shells in comparison with wood sawdust. J. Hazard. Mater. 142 (2007), 144–152. 23. D. Shasha, M. Mupa, N. Muzarabani, L. Gwatidzo, C. Machingauta. Removal of Congo red from aqueous synthetic solutions using silica gel immobilized chlorophyta Hydrodictyon africanum. J. Environ. Sci. Technol. 8 (2015), 83-90. 24. L. S. Oliveira, A. S. Franca, T. M. Alves, S. D. F. Rocha. Evaluation of untreated coffee husks as potential biosorbents for treatment of dye contaminated waters. J. Hazard. Mater. 155 (2008), 507–512. 25. L. Wang, A. Q. Wang. Removal of Congo red from aqueous solution using a chitosan/organo montmorillonite nanocomposite. J. Chem. Technol. Biotech. 82 (2007), 711-720. 26. F. Güzel, H. Say??l?, G.Akkaya Say??l?, F. Koyuncu. Elimination of anionic dye by using nanoporous carbon prepared from an industrial biowaste. J. Mol. Liq. 194 (2014), 130–140. 27. F. Ahmad, W. M. A. W. Daud, M. A. Ahmad, R. Radzi. Cocoa shell (Theobroma cocoa) shell based activated carbon by CO2 activation in removing of cationic dye from aqueous solution: Kinetics and equilibrium studies. Chem. Eng. Res. Des. 90 (2012), 1480–1490. 29. A. Rahnama, M. Gharagozlou. Preparation and properties of semiconductor CuO nanoparticles via a simple precipitation method at different reaction temperatures. Opt. Quant. Electron. 44 (2012), 313–322. 30. V. K. Gupta, S. Sharma, Removal of Cadmium and Zinc from Aqueous Solutions using Red Mud. Environ. Sci. Technol. 36 (2002), 3612-3617. 31. D. A. Nimkar, S. K. Chavan, Removal of Congo red Dye from Aqueous Solution by Using Saw Dust as an Adsorbent. Eng. Res. Appl. 4 (2014), 47-51. 32. S. Sabbaghi, H. Orojlou, M. R. Parvizi, R. Saboori, M. Sahooli, Effect of temperature and time on morphology of CuO nanoparticle during synthesis. Int. J. Nano Dimens. 3 (2012), 69-73. 33. A. Ahmad, M. Rafatullah, O. Sulaiman, M. H. Ibrahim, R. Hashim, Scavenging behaviour of meranti sawdust in the removal of methylene blue from aqueous solution. J. Hazard. Mater. 170 (2009), 357-365. 34. R. P. Han, Y. F. Wang, W. Yu, W. Zou, J. Shi., H. M. Liu, Biosorption of methylene blue from aqueous solution by rice husk in a fixed-bed column. J. Hazard. Mater. 141 (2006), 713-718. 35. Y. Y. Su, B.L. Zhao, W. W. Xiao, R. P. Han, Adsorption behavior of light green anionic dye using cationic surfactant modified wheat straw in batch and column mode. Environ. Sci. Pollut. Res. 20 (2013), 5558–5568. 36. B. Zhao, Y. Shang, W. Xiao, Ch. Dou, R. Han, Adsorption of Congo red from solution using cationic surfactant modified wheat straw in column model. J. Environ. Chem. Eng. 2 (2014), 40 45. 37. A. A. Ahmad, B. H. Hameed, N. Aziz, Adsorption of direct dye on palm ash: Kinetic and equilibrium modeling. J. Hazad. Mater. 141 (2006), 70-76. 38. Z. Aksu, F. Gonen, Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochem. 39 (2004), 599–613. 39. H. C. Thomas, Heterogeneous ion exchange in a flowing system. J. Am. Chem. Soc. 66 (1944), 1466–1664. 40. R. Han, D. Ding, Y. Xu, W. Zou, Y. Wang, Y. Li, L. Zou, Use of rice husk for the adsorption of congo red from aqueous solution in column mode. Biores. Technol. 99 (2008), 2938–2946. 41. C. Namasivayam, D. J. S. E. Arasi, Removal of Congo Red from wastewater by adsorption onto waste red mud. Chemosphere. 34 (1997), 401–417. 42. C. Namasivayam, N. Muniasamy, K. Gayatri, Removal of dyes from aqueous solutions by cellulosticwaste orange peel. Bioresour. Technol. 57 (1996), 37–43. 43. R. Rahimi, H. Kerdari, M. Rabbani, M. Shafiee, Synthesis, characterization and adsorbing properties of hollow Zn-Fe2O4 nanospheres on removal of Congo red from aqueous solution. Desalination. 280 (2011), 412–418. 44. X. Liu, W. Shi, Y. Zhang, S. An, L. Zhang, Adsorbing properties of magnetic nanoparticles Mn-Ferrites on Removal of Congo red From Aqueous Solution. J. Dispersion Sci. Technol. 36 (2015), 462–470. 45. X. S. Wang, J.P. Chen, Biosorption of Congo red from aqueous solution using wheat bran and rice bran: batch studies. Sep. Sci. Technol. 44 (2009), 1452–1466. 46. M. Abbas, M. Trari, Kinetic, Equilibrium and Thermodynamic Study on the Removal of Congo Red from Aqueous Solutions by Adsorption onto Apricot Stone. Process Safety and Environment Protection. (2015), http://dx.doi. org/10.1016/j.psep.2015.09.015. 47. M. Ghaedi, H. Tavallali, M. Sharifi, S. N. Kokhdan, A. Asghari, Preparation of low cost activated carbon from Myrtu scommunis and pomegranate and their efficient application for removal of Congo red from aqueous solution. Spectrochim Acta Part A. 86 (2012), 107–14. 48. S. L. Chan, Y. P. Tan, A. H. Abdullah, S. T. Ong, quilibrium, kinetic and thermodynamic studies of a new potential biosorbent for the removal of Basic Blue 3 and Congo Red dyes: Pine apple (Ananascomosus) plant stem. J. Taiwan Institute. Chem. Eng. 61 (2016), 306-315. 49. Z. Hu, H. Chen, F. Ji, S. Yuan. Removal of Congo red using activated carbon and its regeneration. J. Hazard. Mater. 173 (2010), 292–7. 50. G. S. Bohart, E.Q. Adams, Behavior of charcoal towards chlorine. J. Chem. Soc. 42 (1920), 523. 51. Y. S. Al-Degs, M.A.M. Khraisheh, S.J. Allen, M.N. Ahmad, Adsorption characteristics of reactive dyes in columns of activated carbon. J. Hazard. Mater. 165 (2009), 944. 52. D. C. K. Ko, J.F. Porter, G. McKay, Optimised correlations for the fixed-bed adsorption of metal ions on bone char. Chem. Eng. Sci. 55 (2000), 5819-5829. 53. P. T. Wiliamns, N. Nugranad, Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy. 25 (2000), 493-513. 54. M. S. Reddy, V. Nirmala, Bengal gram seed husk as an adsorbent for the removal of dyes from aqueous solutions–Column studies. Arabian J. Chem. (2014). 55. R. P. Han, Y. Wang, Q. Sun, L. L. Wang, J. Y. Song, X. T. He, C. C. Dou, Malachite green adsorption onto natural zeolite and reuse by microwave irradiation. J. Hazard. Mater. 175 (2010), 1056–1061. 56. Y. K. Li, B. L. Zhao, L. J. Zhang, R. P. Han, Biosorption of copper ion by natural and modified wheat straw in fixed-bed column. Desalin. Water Treat. 2013 (2013), 5735-5745.



فایل مقاله
تعداد بازدید: 428
تعداد دریافت فایل مقاله : 12

ورود به سامانه نشریه
شناسنامه ی نشریه
صاحب امتياز:
موسسه پژوهشي
علوم و فناوري رنگ و پوشش
مدير مسوول:
پروفسور زهرا رنجبر
سردبير:
پروفسور زهرا رنجبر
مدير اجرايي:
دکتر فرهاد عامري
شاپا چاپي:
8779 - 1735
شاپا الکترونيکي:
2169 - 2383
دسترسی سریع
آخرین شماره های نشریه
آمارهای وبگاه
تعداد بازدید:429

کاربران حاضر:12